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Abstract This paper studies option investors’ tendency todeviate from risk-neutrality around
extreme financial events. We incorporate ambiguity into Black–Scholes theory and analyze
the lead–lag association between option and stock markets during 2006–2008. Our findings
from the Standard and Poor’s 500 index options reveal that investors’ option implied ambi-
guity moderates the lead–lag relationship between implied and realized volatility. We find
that implied ambiguity contains predictive realized volatility information (beyond constant
and stochastic implied volatilities), and that implied volatility is a less biased predictor of
realized market variance when accounting for ambiguity in option pricing. We are also able
to track changing investors’ ambiguity perceptions (pessimism or optimism) prior to severe
volatility events and document shifts in ambiguity aversion among put option holders in the
period leading to the fall 2008 global market crash. Our results hold under multiple-priors
and Choquet ambiguity specifications.

Keywords Choquet utility ·Multiple-priors ·Option implied ambiguity · Implied volatility ·
Realized volatility · Uncertainty

Abbreviations

BS Black–Scholes
BSIV Black–Scholes risk-neutral implied volatility
BSIV × IC Interaction between BSIV and IC
CBOE Chicago board options exchange
CDS Credit default swaps

B Tarik Driouchi
tarik.driouchi@kcl.ac.uk

1 Department of Management, King’s College London, University of London, Franklin-Wilkins
Building, 150 Stamford Street, London SE19NH, UK

2 Department of Accounting and Finance, University of Cyprus, 1678 Nicosia, Cyprus

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-015-2079-y&domain=pdf


www.manaraa.com

464 Ann Oper Res (2018) 262:463–491

CEU Choquet expected utility
IC Option implied ambiguity
ICBSIV Ambiguity-adjusted implied volatility (BSIV × IC)
II Investors intelligence
IV Implied volatility
IVc Ambiguity-based implied volatility
MEU Multiple-priors expected utility
NW Newey–West
OTM Out of the money
RV Realized volatility
s × BSIV Choquet-based implied volatility
SPX S&P 500 index options
SV Stochastic volatility
SV × IC Interaction between SV and IC
VIX CBOE implied volatility index

“In abnormal times…when the hypothesis of an indefinite continuance of the existing state of affairs is less
plausible than usual…the market will be subject to waves of optimistic and pessimistic sentiment, which are
unreasoning and yet in a sense legitimate where no solid basis exists for a reasonable calculation.”

Keynes (1936)

1 Introduction

Current evidence documents a lead–lag association between the volatilities implied by prices
of exchange-traded options and the volatilities realized subsequently in underlying asset
prices (e.g., indexes and equities) (Whaley 2009; Clark and Baccar 2015). Options mar-
ket prices are known to anticipate future underlying asset price behavior such that option
implied volatility (IV) often acts as an efficient (though perhaps biased) predictor of future
stock/index returns and realized volatility (Elkhodiry et al. 2011; Zagst and Kraus 2011).
The CBOE’s VIX index, IV and other options market information can be used to gauge
market fear, serving as good examples of how to take stock of the informational efficiency of
options markets and exploit interactions between derivative and primitive asset transactions.
However, although providing relevant insights with respect to investors’ expectations and
risk aversion (Jackwerth 2000; Poteshman 2001; Kim and Leung 2014), these tools do not
adequately explain investment behavior under severe uncertainty, ignorance or ambiguity
conditions (Feldman 2007; Montesano 2008; Stiglitz 2011). Swings in investor opinions and
market sentiment which normally occur around financial crashes or major economic shocks
are not fully captured by standard options markets indicators. Risk monitoring measures
such as VIX, Black–Scholes implied volatility (BSIV) and their variants fail to consider that
individuals might often assign different decision weights to events with negative or posi-
tive realizations and that investors need not apply the same probabilistic decision rules to
gains and losses when faced with uncertainty (Tversky and Kahneman 1992;Mandelbrot and
Hudson 2008). As a consequence, estimations of options returns and implied volatilities are
subject to “vagueness” and partial ignorance, causing miscalibration and “irrational” behav-
ior (Knight 1921; Keynes 1936). Accounting for these subjective traits and the uncertainty
aversion of individual investors, such as analysts and traders, can therefore provide more use-
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ful information about the effects of abnormal uncertainty on market sentiment, help detect
signs of financial market instability, and potentially lead to better anticipation andmonitoring
of financial market swings.

In this paper, we investigate the uncertain behavior of US index put option holders during
the (pre-)crisis and credit crunch period 2006–2008, highlighting the incremental information
content of investors’ option implied ambiguity (IC) in explaining the lead–lag relationship
between option implied volatility and (realized) asset volatility (RV) under Knightian uncer-
tainty conditions.1 We contribute to the extant literature on uncertainty, derivatives and risk
prediction by (1) showing evidence of ambiguity in the US index options market during
2006–2008, and (2) measuring the effect of ambiguity, implied directly from observed option
prices, on realized index volatility.We find that, after controlling for implied volatility effects,
ambiguity from derivatives markets predicts and is positively associated with stock market
volatility in uncertain times. This effect has not been observed in prior financial economics
and decision-making research.

We extend the Black–Scholes (BS) (1973) setting by incorporating ambiguity through
Choquet Brownian motions, multiple-priors and the notion of c-ignorance (see e.g.,
Chateauneuf et al. 1996; Agliardi and Sereno 2011; Araujo et al. 2012) to the option pricing
apparatus. We then use our extended model to empirically assess the informational efficiency
of option implied volatility and ambiguity as predictors of stock index realized volatility. To
this aim, we use a set of US SPX index put options (options written on the S&P 500 index)
during 2006–2008, over a period of 588 trading days characterized by unusual uncertainty.
Encompassing the fall 2008 global market crash, this time window provides a good ‘labo-
ratory’ setting for gauging changing market sentiment and investors’ heterogeneous beliefs
in conditions of high uncertainty. Put options, as a form of insurance, are particularly suit-
able to capture investors’ crash worries and risk concerns during the credit crunch and its
aftermath.

We find that in times of high uncertainty, such as the 2006–2008 period, ambiguity-
adjusted implied volatility (ICBSIV) backed-out from our extended option pricing model
is a better predictor of stock market volatility than risk-neutral implied volatility (constant
and stochastic). We also show that the ambiguity perceptions implied from index option
prices contain incremental information beyond standard implied volatility, and document
shifts in ambiguity aversion among US SPX index put option holders in the period leading
up to the fall 2008 crash. Besides confirming a positive moderating role of investors’ ambi-
guity aversion in explaining the lead–lag IV–RV relationship, we provide evidence on the
information efficiency of options markets for a number of behavioral traits (e.g., pessimism
and optimism) extracting investment sentiment and implied ambiguity directly fromobserved
options prices. Option contracts not only contain information about the volatility/risk implied
in options prices but also help characterize the ambiguity aversion or degree of investor con-
fidence about future market prospects. This can help monitor swings in investor opinion and
market sentiment not captured by standard risk models.

A number of studies have attempted to address related information efficiency issues
using fuzzy principles of uncertainty and ambiguity (Cherubini 1997; Anderson et al. 2009;

1 HereweviewChoquet ambiguity as a type ofKnightian uncertainty, considering ambiguity as a dimension of
uncertainty beyond probabilistic risk that can be estimated under a partial ignorance framework using Choquet
expected utility (CEU) and Choquet Brownian motions. The words (Knightian) uncertainty and ambiguity
are used interchangeably (De Palma et al. 2008; Guidolin and Rinaldi 2013). Alternative frameworks for
representing ambiguity include multiple-priors expected utility (MEU) (e.g., Nishimura and Ozaki 2007;
Riedel 2009) and robust control theory (e.g., Liu et al. 2005; Marzban et al. 2015). Throughout the paper, we
study multiple-priors ambiguity as a special case of Choquet uncertainty.
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Jahan-Parvar and Liu 2014). Other authors examine problems pertaining to model uncer-
tainty (Buraschi and Jiltsov 2006; Li 2007), heterogeneous beliefs (Liu et al. 2005; Han
2008) and market incompleteness (Mellios 2007; Beber et al. 2010) using analysts forecasts,
expert survey data or other proxy information. Explicitly focused on derivatives transactions,
Boyarchenko (2012) and Drechsler (2013) investigate how underlying realized volatility
causes model uncertainty or ambiguity in CDS and option markets. In a similar vein,
Polkovnichenko and Zhao (2013) show how probability weighting might explain option
investors’ behavior in the US.2 None of these papers has investigated empirically the infor-
mation content of ambiguity aversion in the lead–lag option and stock markets association.
Addressing this gap, we introduce the concept of option implied ambiguity to the literature
and demonstrate its predictive power regarding future volatility. We examine theoretically
and assess empirically the information role of ambiguity aversion in index options prices.
This is achieved by analyzing the lead–lag IV–RV relationship under both Choquet and
multiple-priors ambiguity specifications.

We use Choquet expected utility (CEU) as a general framework to represent ambiguity as
model parameter uncertainty generally affects the first and secondmoments of the distribution
of index returns in times of ambiguity (e.g., Gollier 2008; Ford et al. 2014). We rely on
previous evidence suggesting that several phenomena under ambiguity can be explained
under the CEU lens (e.g., Kelsey et al. 2011; Nguyen et al. 2012). Moreover, the CEU
framework is nested within cumulative prospect theory, implying that individuals attach
different weighted probabilities (capacities) to various events depending on whether they
result in losses or gains under uncertainty. The basic asymmetric nature of options fits well
within this context. We examine the multiple-priors expected utility (MEU) specification for
comparison as it is a special case of CEU plus it has been empirically validated in a number
of empirical settings (Hey et al. 2010).

We extend the existing literature on the global financial crisis, incomplete information
and option-based risk prediction by extracting ambiguity from observed put options prices
given our uncertainty-based option model, and unveil the incremental information content
of option implied ambiguity in explaining the realized dispersion of index returns in the
US for the turbulent 2006–2008 period. We show that ambiguity aversion, in the form of
option holders’ subjective deviations from risk-neutrality, is positively associated with index
volatility in uncertain times and that option implied ambiguity contains predictive realized
volatility information beyond standard risk-neutral IV and other option implied information
(e.g., the CBOE VVIX and SKEW indices).

Our findings underscore the need to consider broader models of uncertainty for tracking
and monitoring market volatility during periods of economic and financial instability. The
remainder of the paper is organized as follows. Section 2 presents the economic setup and
modeling framework used to describe ambiguity and develops our ambiguity-based put option
pricing model. Section 3 describes our data and empirical methods. Section 4 discusses our
empirical findings and implications. Section 5 concludes.

2 Background and modeling framework

Prior research dealing with miscalibration and model misspecification has addressed the
problem of option pricing and investment under ambiguity from several perspectives, such

2 We go beyond descriptive observations by measuring and highlighting empirically the information content
of investors’ ambiguity aversion, via the IV–RV linkage, in derivatives markets.
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as robust control (Trojani and Vanini 2004; Liu et al. 2005; Cogley et al. 2008; Jaimungal
and Sigloch 2012), multiple-priors (Nishimura and Ozaki 2007; Riedel 2009; Vorbrink 2011;
Faria and Correia-da-Silva 2012; Ben Ameur and Prigent 2013) and Choquet ambiguity
(Chateauneuf et al. 1996; De Waegenaere et al. 2003; Javanmardi and Lawryshyn 2015).
Not many studies, however, have been devoted to the key issue of risk prediction and how
derivativesmarkets ambiguity affects stockmarket volatility assessment. In financialmarkets,
ambiguity refers to situations where market participants are not sure about the likelihoods
of the states of the world (e.g., resulting in ambiguous rates of return and volatility). Such
ambiguous situations,when theyoccur, affect every asset class in themarketplace (Trojani and
Vanini 2004; Faria and Correia-da-Silva 2012). This study investigates such a phenomenon,
the 2006–2008 subprime crisis, through the informational lens of options markets. Our main
hypothesis is that due to partial ignorance and model misspecification among investors,
ambiguity aversion should be positively related to stock market variance in uncertain times,
and that option implied ambiguity contains predictive information about realized volatility
beyond that of implied volatility.

We examine the role of ambiguity inUS derivativesmarkets during the subprime crisis and
reassess the efficiency of options pricing information in volatility prediction. We revisit the
fundamental relationship between option and stock markets from the perspective of Choquet
and multiple-priors ambiguity (Gilboa and Schmeidler 1989, 1994; Schmeidler 1989), and
provide robust evidence on the (incremental) predictive power of option implied ambiguity
regarding future underlying volatility. We further show that the lead–lag IV–RV relationship
goes beyond risk-neutrality and holds under different degrees of ambiguity, disproving the
superiority of the standard risk-neutral IV as an efficient predictor of RV.

A few studies have recently dealt with the dynamics of option pricing under Choquet
expected utility. These include Muzzioli and Torricelli (2004) on option pricing in illiquid
markets, and Kast and Lapied (2010) and Roubaud et al. (2010) on investment timing and
optimal stopping. The CEU framework fits well in a market environment where complex
instruments are traded by “sophisticated” investors. We test, in comparison to MEU, the
extent to which investors follow sophisticated decision-rules (such as CEU) in dealing with
ambiguous prospects. This is an alternative to simpler rules such as the maxmin (multiple-
priors) or maxmax criteria (Dana 2002). Following Chateauneuf et al. (2001, 2007), Kast and
Lapied (2010), Kast et al. (2014) and Driouchi et al. (2015), we develop a general European
option pricing model applied to the valuation of index put options and use it to extract
option implied ambiguity and implied volatility estimates under uncertainty. We then assess
the information content of index put option prices3 over the 2006–2008 subprime crisis, a
period that covers both the 2007–2008 credit crunch and the 2008 global markets crisis.
Characterized by unusual periods of uncertainty with pessimistic and optimistic swings in
global markets, this time window presents a real-life ‘experimental’ environment to gauge
investors’ changing ambiguity perceptions.

We derive the generalized price of a European put option under ambiguity using amodified
pricing kernel (e.g., Franke et al. 1999; Driouchi et al. 2015). We consider a two-asset
economy in which investors’ estimations of expected asset returns and variances are affected
by “vagueness” and partial ignorance induced by model parameter uncertainty (e.g., Gollier
2008; Buraschi and Jiltsov 2006). The underlying process driving option prices is subject to
perturbations of the drift and volatility components, so that investors might assign different

3 Put options are examined in this research because they represent a form of insurance against losses for
investors and are, therefore, suitable for our study of ambiguous behavior in uncertain times. Although our
qualitative conclusions hold for call options holders, studying call option investments is out of the scope of
this paper.
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probabilistic weights to potential gains or losses. The price of the underlying index S, on
which the option is written, is assumed to follow the set of Choquet Brownian motions (e.g.,
Kast and Lapied 2010; Agliardi and Sereno 2011; Kast et al. 2014) of the form:

d S

S
= (μ + mσ)dt + sσdz (∀m ∈ ]−1, 1],∀s ∈]0, 1]) (1)

where m and s (both functions of a probability weighting function or ambiguity proxy c),
are the mean and standard deviation of a general Wiener process W , with dW = mdt + sdz
(such that d S

S = μdt + σdW ), with z being a standard Wiener process. This category of
Brownian motions has been validated by Kast and Lapied (2010) and Kast et al. (2014) in
the context of decision theory under ambiguity. The authors show that it satisfies dynamic
consistency and rectangularity principles, can be obtained as the limit of a random walk and
nests multiple-priors ambiguity where m �= 0 and s = 1. The multiple-priors form captures
optimism or pessimism in the drift term of the lognormal diffusion (but not in the volatility
term). When m = 0 and s = 1, Eq. (1) simplifies to a standard (risk-neutral) formulation
with indifference towards uncertainty. In theChoquet setup, behavioral and ambiguity-related
variables m and s are determined by a weighted probability function or capacity variable c,
with 0 < c < 1. Based on theweights and degree of confidence about probabilistic judgment,
this conveys whether individuals are seeking uncertainty or not. Eq. (1) is thus a stochastic
Brownian processwithmodel parameter uncertainty in both its drift and volatility components
indicative of investors’ model misspecification (swings in perceptions) under ambiguity.4

This representation of uncertainty follows a symmetric randomwalk which converges to a
generalWiener process W with mean m = 2c−1 and variance s2 = 4c(1−c), as in Agliardi
and Sereno (2011), Kast and Lapied (2010) and Kast et al. (2014). It is a generalization of the
MEU case which we also study for comparison (see, e.g., Trojani and Vanini 2004; Faria and
Correia-da-Silva 2012 for some of the asset pricing implications of multiple-priors ambigu-
ity). There is a range of possible values (determined by c) for the drift and volatility terms of
the Brownian motions resulting in multiple probabilities of option exercise, heterogeneous
behavior and imperfect hedging. In this sense, m > 0 (m < 0) signifies investor optimism
(pessimism) and s �= 1 means volatility is measured subjectively, generally underestimated,
because of behavioral factor s. Since m and s are both determined by the capacity variable
c, the latter is usually viewed as a composite indicator of investor ambiguity and uncertainty
attitudes. Comparable to k-ignorance, c has been used as a measure of uncertainty attitude
or degree of confidence about probabilistic judgment in decision-making and behavioral
economics (Eichberger and Kelsey 1999; Wakker 2001; Araujo et al. 2012). Acting as a
conditional capacity in the Choquet integral, c summarizes decision-makers’ ambiguity per-
ceptions about index prices, with 0 < c < 0.5 representing degrees of ambiguity aversion,
while 0.5 < c < 1 implying ambiguity-seeking behavior. c = 0.5 reduces to the traditional
probabilistic framework (i.e., risk or ambiguity-neutral case). c < 0.5 (c > 0.5) implies that
higher decision weights are assigned to choices with pessimistic (optimistic) outcomes. We
find that, as an indicator for option investors’ tendency to deviate from risk-neutrality, the
c measure is significantly correlated with the US consumer confidence index (CCI) and the
US policy uncertainty index (PUI) (both viewed as proxies for uncertainty in the economics
literature) during the 2006–2008 period. We also find that c is significantly positively associ-
ated with (and predicts) the difference between RV and IV. This difference would not exist in
the absence of uncertainty. Therefore, c is a reasonable proxy for ambiguity and uncertainty
attitudes in our option pricing context.

4 Equation (1) also allows for more than one asset price S in the economy under ambiguity and implies
uncertainty in bid and ask spreads (De Waegenaere and Wakker 2001).
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Let B be the price of a riskless bond with instantaneous rate of return r such that:5

d B

B
= rdt (2)

Let P be the price of a contingent-claim (e.g., a European put option on the stock index)
which depends only on S and time t , P(S, t). From Ito’s lemma and Eq. (1), the dynamics
of option price P under ambiguity can be written as:

d P (S, t) = ∂ P

∂t
dt + ∂ P

∂S
[(μ + mσ) Sdt + (sσ) Sd Z ]

+ 1

2

d2P

d S2

([(sσ)Sd Z ]2 + [(μ + mσ)Sdt]2 + [(sσ)Sd Z × (μ + mσ)Sdt])

(3)

This simplifies to:

d P (S, t) =
[

∂ P

∂t
+ ∂ P

∂S
(μ + mσ) S + S2 1

2

d2P

d S2 (sσ)2
]

dt + ∂ P

∂S
(sσ) Sd Z (3′)

Because of the distorted nature of Eq. (1), c perturbs both the drift and volatility compo-
nents of Eq. (3′). Having specified the general price dynamics of securities S, B and P , we
next identify the related market pricing kernel and apply martingale theory (Doob 1953) to
arrive at the fundamental valuation equation for derivative price P under ambiguity.

The level of marginal utility in the economy ξ follows the Choquet ambiguity dynamics:6

dξ

ξ
= [mg (ξ, S) + f (ξ, S)] dt + sg (ξ, S) dz (∀m ∈]−1, 1[,∀s ∈]0, 1]) (4)

Then

d (ξ B) = ξ (r Bdt) + B [(mg (ξ, S) + f (ξ, S)) ξdt + sg (ξ, S) ξdz]

= ξ B [(r + mg (ξ, S) + f (ξ, S)) dt + sg (ξ, S) ξdz] (5)

The drift (dt) being zero implies:

r + mg (ξ, S) + f (ξ, S) = 0 or f (ξ, S) = −r − mg (ξ, S) (6)

Following a similar process for S:

d (ξ S) = ξd S + Sdξ + d < ξ, S > (7)

where in the last term in Eq. (7), <, > stands for the inner product of functions ξ and S.

d (ξ S) = ξ S [(μ + mσ) dt + sσdz] + Sξ {[mg (ξ, S) − r − mg (ξ, S)] dt

+ sg (ξ, S) dz} + s2σξ Sg (ξ, S) dt

= ξ S
[
(μ + mσ) − r + s2σg (ξ, S)

]
dt + Sξ [sσ + sg (ξ, S)] dz (8)

5 We assume, for simplicity, that ambiguity does not yet have an impact on equilibrium interest rates. This
corresponds to cases where shocks in St are not yet correlated (ρ2 = 0) to those of the economic output rate
or where the latter is simply deterministic, as highlighted by Faria and Correia-da-Silva (2012) in their general
equilibrium framework under ambiguity.
6 This results from dξ

ξ
= f (ξ, S) dt + g (ξ, S) dW (see Harrison and Kreps 1979) and the characteristics

of W in the Choquet ambiguity universe. The functions g and f help derive the ambiguity-adjusted formula
for the pricing kernel.
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This implies:

(μ + mσ) − r + s2σg (ξ, S) = 0 or g (ξ, S) = [r − (μ + mσ)]

s2σ
(9)

Equation (9) is akin to an ambiguity-adjusted Sharpe ratio (see also Gollier and Schlee
2011; Rieger and Wang 2012). Ambiguity appears in both the numerator and denominator
of this equation. Excess returns are corrected by an ambiguity-related factor mσ while the
risk component is adjusted by ambiguity scalar s. The excess returns correction is in line
with the multiple-priors findings of Trojani and Vanini (2004) (i.e., their Proposition 3). The
risk adjustment matches their MEU-unrelated robust control setting (i.e., their Eq. (17)).
Our Choquet specification (Eq. 9) accounts for both corrections. It is noteworthy that mσ

from the MEU version of our Eq. (9) (m �= 0 and s = 1) coincides with the market price
of ambiguity (case where ρ = 0) derived by Faria and Correia-da-Silva (2012) in their
multiple-priors-based general equilibrium model of asset prices.

We assume the pricing kernel follows the general structure of Harrison and Kreps (1979)
dynamics but is affected by ambiguity in its fundamental component. Since they depend on
ambiguity parameters m and s (with −1 < m < 1 and 0 < s ≤ 1), f and g are indeed not
unique in this setting. This means that the pricing kernel captures swings in fundamentals but
not pure sentiment (seeCochrane 2001; Shefrin 2005 andHan 2008 for discussions of how the
marginal rates of substitution can be disconnected from the market kernel under uncertainty).
Relaxing thismarket incompleteness or imperfect hedging assumption incrementally takes us
back to the perfect replication or risk-neutral case of a Black and Scholes (1973) framework
with constant volatility. Using the results from Eqs. (6) and (9):7

dξ

ξ
= f (ξ, S) dt + g (ξ, S) dz

= −r − m

{
[r − (μ + mσ)]

s2σ

}
dt +

(
[r − (μ + mσ)]

s2σ

)
dz (10)

Consider now the value of a put option P written on underlying stock index S. We derive
the general case with dividend yield δ.8

d (ξ P) = ξd P + Pdξ + d < ξ, P >

= ξ

{[
∂ P

∂t
+ ∂ P

∂S
(μ − δ + mσ) S + S2 1

2

d2P

d S2 (sσ)2
]

dt + ∂ P

∂S
(sσ) Sdz

}

+ ξ P

[
−r − m

{
[r − (μ + mσ)]

s2σ

}
dt +

(
[r − (μ + mσ)]

s2σ

)
dz

]

+ ξ

[(
[r − (μ + mσ)]

s2σ

)
∂ P

∂S
(sσ) Sdt

]
(11)

Setting the drift (dt) term of the derivative to zero results in the ambiguity-adjusted fun-
damental equation for pricing contingent-claims (including the put option P):

7 This implies that mg (ξ, S) dt + (s − 1) g (ξ, S) d Z = 0, and that the market kernel is not equal to the
marginal utility level. This results from market incompleteness that occurs during depressions or when the
states of the world are not known (perfect hedging is no longer feasible under such conditions).
8 δ is introduced in the dt component of Eq. (1), replacing the drift term with µ − δ.
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ξ

[
∂ P

∂t
+ ∂ P

∂S
(μ − δ + mσ) S + S2 1

2

d2P

d S2 (sσ)2
]

dt

+ ξ P

[
−r − m

{
[r − (μ + mσ)]

s2σ

}
dt

]

+ ξ

[(
[r − (μ + mσ)]

s2σ

)
∂ P

∂S
(sσ) Sdt

]
= 0 (12)

After rearranging terms and simplifying, this leads to:

∂ P

∂t
+ S2 1

2

d2P

d S2 (sσ)2 + (
r ′ − ε′) ∂ P

∂S
S − r ′ P = 0 (12′)

where:

r ′ = r + m
[r − (μ + mσ)]

s2σ
and ε′ = δ −

(
m + s2σ − sσ

)
[(μ + mσ) − r ]

s2σ

Ambiguity impacts the fundamental valuation equation through the investor’s discount
rate, theDelta andGamma of the option. r ′ and ε′ are factors that distinguish ambiguity-based
analysis from risk-neutral valuation with m = 2c − 1 and s = √

4c (1 − c) . r ′ is equivalent
to a subjective (sometimes negative) investor discount rate, while yield ε′ corresponds to
a subjective investor value erosion factor dependent on Knightian or ambiguous beliefs.
Eq. (12′) is a special case of Eq. (20) in Driouchi et al. (2015) and their exchange option
pricing framework. Its MEU equivalent is also closely related to the equilibrium-based Eq.
(17) of Faria and Correia-da-Silva (2012), confirming that the price of uncertainty plays an
important role in contingent-claims valuation. When dW = dz, the analysis reduces to risk-
neutral dynamics. In line with Merton (1973), a solution to pde (12′) with appropriate initial
and terminal conditions for a European put option with strike price K and maturity T under
ambiguity (following the standard Black–Scholes notation but noting the extended roles of
r ′ and ε′ in Eq. (13)) is:

P ′
0 = K e−r ′T N

⎛

⎝−
ln

(
S0
K

)
+ (

r ′ − ε′ − 0.5 (sσ)2
)

T

sσ
√

T

⎞

⎠

− S0e−ε′T N

⎛

⎝−
ln

(
S0
K

)
+ (

r ′ − ε′ + 0.5 (sσ)2
)

T

sσ
√

T

⎞

⎠ (∀ c ∈]0, 1[) (13)

This solution corresponds to the set of possible prices satisfying Eq. (13) for 0 < c < 1.
K , S, T , r , σ and δ represent the usual inputs of constant volatility option pricing mod-
els under risk. N is the standard cumulative normal distribution function. In our extended
framework, r ′ and ε′ account for investors’ heterogeneous beliefs and subjective discounting
features proxying for their tendency to deviate from risk-neutrality under ambiguity. Behav-
ioral variable s is a subjective volatility scalar which arises under ambiguity or when shocks
and innovations are unexpected. As volatility is underestimated in this setting, both c and s
should help better explain the IV–RV spread documented in the empirical literature. When
c = 0.5, m = 0 and s = 1, the above generalized put option formula reduces to the standard
Black–Scholes solution for a European put option as ε′ = δ, r ′ = r and sσ = σ .

Equation (13) is thus a natural extension of the Black–Scholes (risk-neutral) setup to the
case of Choquet ambiguity (subsuming MEU where m �= 0 and s = 1). This implies that
behavioral variables c, m and s contain subjective investor information that the standard
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risk-neutral formulation does not have. The aim of our paper is to quantify the effect of this
subjective information on stock market volatility in the context of the 2006–2008 subprime
crisis. We expect the ambiguity proxy c to contain predictive information beyond risk-neutral
measures, and option implied ambiguity IC to be positively associated with S&P 500 index
volatility in uncertain times. By back-solving Eq. (13) for σ numerically, given observed put
option prices in abnormal market periods, ambiguity-based implied volatilities (IVc) can be
obtained for various levels of ambiguity attitudes or ignorance c (acting as determinant for
m and s) allowing us to capture IV dynamics under changing heterogeneous beliefs (see Eq.
(20) in Sect. 3.4). Moreover, one can infer market ambiguity parameters m, s and c implied
from traded options prices if σ is known by minimizing the distance (i.e., absolute error)
between observed market prices and model intrinsic values (e.g., the option price per day is
characterized by a daily implied c = P ′−1

(
K , S, T, r ′, δ, σ

)
) [see Eq. (21) in Sect. 3.4].

Based on Eq. (13), we posit that option implied ambiguity contributes to (understanding)
fluctuations in the realized volatility of the underlying index and acts as a moderator in the
lead–lag IV–RV relationship. We empirically test whether IC contains incremental informa-
tion over IV in predicting RV, raising stock market volatility. This is explained by the fact
that behavioral deviations from risk-neutrality (i.e., subjective sentiment) can be associated
with positive changes in stock market volatility (De Bondt and Thaler 1987). Specifically, we
assess the efficiency of the Choquet- and multiple-priors-based implied option information
models and examine whether their ambiguity-based information is less biased than that of
the risk-neutral case (implied by the standard Black–Scholes IV). For robustness purposes,
we also test whether daily and weekly ambiguity IC has incremental information over IV in
predicting RV using the stochastic volatility (SV) framework of Heston (1993). In line with
standard literature on the information content of option implied volatility, OLS regressions
are employed. Section 3 presents our data and the methodology we follow for the empirical
analysis.

3 Data and methodology

3.1 Data

We study the subjective behavior of US index put option holders who invested in crash
insurance, in the form of put options on the market index, in the period leading to the 2008
crash. Put option data (dividend-adjusted) on theS&P500 indexwere obtained fromThomson
Datastream. This covers daily settlement prices for the (European-type) put options (SPX),
maturity dates (T ) and strike prices (K ). Daily settlement prices of the underlying stock
market index were also collected for the calculation of daily realized volatilities (RV), option
implied ambiguity (IC), ambiguity-based implied volatility (IVc), and Black–Scholes and
stochastic risk-neutral implied volatilities (BSIV and SV). In computing the option implied
volatility and ambiguity measures, we focused our selection on contracts that matured on
18 Dec 2008,9 the last trading day of our sample period of 2006–2008. This covers the
periods preceding and surrounding the subprime crisis, the 2007–2008 credit crunch and
the fall 2008 financial crash, all characterized by high levels of ignorance and ambiguity in
global financial markets. Put option contracts that were out-of-the-money (moneyness K/S
ranging from 0.51 to 0.93) for the longest periods were selected for further scrutiny as they

9 Our conclusions are unchanged if series of shorter maturity contracts are selected over the 2006–2008
period.
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represent situations of investors’ sustained uncertainty and downside risk expectations. This
is in line with Bates (2008) who argues that OTM put options reflect investors’ tendencies to
insure themselves against crash risk. Implied volatilities IVs and implied ambiguity ICs are
computed from daily settlement prices of the selected OTM put option contracts backed-out
from our ambiguity-extended put option pricing model of Eq. (13). Yields of US T-bills and
T-bonds over the maturity of each contract are used as the risk-free rate (r) in computing IV
and IC for the index.

To examine the information efficiency of our ambiguity-based put option pricing frame-
work of Eq. (13), we employ two regression designs (setups 1–2) in the analysis: (1) Setup
1 is aimed at estimating the IV–RV relationship under heterogeneous beliefs (under multiple
c levels) revealing the moderating role of ambiguity factor c in this relationship and verify-
ing whether such a relationship holds under different behaviors. (2) Setup 2 investigates the
moderating effect of option implied ambiguity IC (with the c factor acting as a proxy for
ambiguity) on the IV–RV relationship, focusing on estimating the incremental information
content of this effect. Timelines and regression characteristics for each design are described
in Sects. 3.2 and 3.3. We present Newey and West (1987) (NW) adjusted standard errors to
overcome autocorrelation problems in the regression models. Our main purpose here is to
compare the information content of option prices under alternative but comparable informa-
tion frameworks (i.e., Choquet or multiple-priors vs. Black–Scholes), examining the effect of
heterogeneous ambiguity beliefs and verifying whether the ambiguity-based option analysis
provides more information than its risk-neutral counterpart.

3.2 Methodology: revealing the moderating role of ambiguity (setup 1)

This setup consists of estimating ambiguity-based implied volatilities IVc (using a designated
c value 0 < c < 1 indicative of uncertainty preferences and ambiguity perceptions) over the
2006–2008 period. This is meant to illustrate the dynamics of IV under a range of ambiguity
levels and establish whether the IV–RV association holds under pessimism and/or optimism.
It is analogous to verifying whether the IV–RV relationship is represented by multiple lines
with different slopes. This helps illustrate that the risk-neutral IV–RV relationship is not
unique and may actually miss alternative ambiguity behaviors. For each contract, a series
of (17) ambiguity-based implied volatilities with c values ranging from 0.1 to 0.9 (in 0.05
increments) were obtained for regression purposes. Recall that c < 0.5 represents pessimism,
c = 0.5 risk-neutrality, and c > 0.5 optimism. Serving as a preamble to the findings of setup
2, setup 1 should (dis)prove the (superiority) lack of uniqueness of the risk-neutral IV–RV
relationship and underline the role of ambiguity in this relationship.

In line with prior research in this area (e.g., Fung 2007; Taylor et al. 2010), we use the
following lead–lag regression model on our OTM put option price series for setup 1:

RVt,T = β0 + β1 I Vc,t + ε (14)

where RVt,T represents the ex-post realized index volatility from t to T (where T is the
maturity date of the option and T > t) and I Vc,t represents ambiguity-based option implied
volatility under ignorance level c. Findings for this model are presented in Sect. 4, Table 3.
The corresponding timeline is shown in Table 1. To verify the robustness of the information
content of index option prices under ambiguity, different sample horizons are used. The
regression schedule for these different horizon lengths is shown in Table 1. This timeline is
also valid for setup 2.
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Table 1 Regression timeline for setups 1 and 2

Regression length (months) Start day of data series End day of data series

12 24/12/2007 20/11/2008

15 24/09/2007

18 18/06/2007

21 19/03/2007

24 18/12/2006

27 18/09/2006

The table shows the regression schedule followed for setups 1–2 for different period lengths during 2006–2008.
Data coverage: 09/2006–12/2008

3.3 Methodology: estimating the moderating effect of implied ambiguity (setup 2)

This setup consists of extracting ambiguity aversion (implied c after inverting Eq. (13)) from
put option prices and estimating its moderating effect on the IV–RV relationship. IC is esti-
mated byminimizing the distance (absolute error) betweenmodel option prices and observed
index option prices (see Eq. 21). Regressions analyzing the information content of IV under
the standard Black–Scholes model (as benchmark) compared to our ambiguity-adjusted
model of Eq. (13) are carried out for each option contract. Regressions with interaction terms
for ambiguity are implemented daily and weekly to test whether option implied ambiguity
IC contains incremental information (beyond risk-neutral IV) regarding RV. Risk-neutral IVs
are computed along the corresponding IC value on that day. The interaction term BSIV× IC,
which we refer to as ambiguity-adjusted implied volatility ICBSIV, is used as an explanatory
factor in the statistical regressions. To quantify the moderating effect of investors’ implied
ambiguity IC in the IV–RV linkage, the following lead–lag setup 2 model is implemented:

RVt,T = β0 + β1BSI Vt + β2BSI Vt × I Ct + ε (15)

where RVt,T is the realized index volatility as inEq. (14), BSI Vt stands for theBlack–Scholes
impliedvolatility (BSIVasdefined earlier), and I Ct represents option implied ambiguity from
observed index put option prices. Equation (15) is suitable for estimating the interaction effect
of ambiguity on the IV–RV relationship. Equation (15) is then compared to the (risk-neutral)
Black–Scholes IV information structure. We use the following benchmark (lead–lag) model
for comparison in setup 2:

RVt,T = β0 + β1BSI Vt + ε (16)

where RVt,T and BSI Vt are defined as before. Despite several drawbacks, the BS setting
remains a reasonable benchmark for comparison and exhibits accurate forecasting power
over alternative information frameworks (e.g., Clark and Gosh 2004; Muzzioli 2010; Ayadi
et al. 2014). Our aim here is to compare fundamental frameworks that are economically
comparable in terms of information content and predictive power and that enable us to
isolate the ambiguity aversion effects induced by the IC factor. The standard BS framework
is a plausible choice as a benchmark model for comparison. For robustness, we also compare
a variant of Eq. (15) under stochastic volatility based on the Heston (1993) formulation using
SV in lieu of BSIV with the equivalent of Eq. (16) based on risk-neutral SV.

The two regression models described in Eqs. (15) and (16) are implemented on the rele-
vant OTM index option contracts. If the ambiguity-adjusted IV formulation provides more
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information content than the risk-neutral benchmark model, regressions based on Eq. (15)
should yield a higher R2 and more significant coefficients than those of Eq. (16).

Additionally, in Sect. 4.3, we test whether Choquet-based implied volatility (s × BSIV),
where s = (4c(1 − c))1/2 is the ambiguity-driven volatility scalar fromEq. (13), is a superior
predictor of RV compared to BSIV. As in setup 1, different sample lengths are used to
examine the robustness of findings for the 2006–2008 period. In brief, setup 2 measures the
moderating effect of option implied ambiguity IC in the IV–RV linkage. Setup 1 verifies
whether moderation exists by examining the multiplicity of the IV–RV relationship under
different c levels. The independent incremental information content of IC is also presented as
additional findings in Sect. 4.3 where the following lead–lag information structure is tested
and compared to Eq. (16):

RVt,T = β0 + β1BSI Vt + β2 I Ct + ε (17)

where RVt,T , BSI Vt and I Ct are defined as before. Findings for this model are presented
in Sect. 4, Table 5.

3.4 Variables specification

3.4.1 Realized volatility (RV)

This is computed by taking the ex-post annualized sample standard deviation (SD) of the
daily index returns over a specific period. For example, the RV on day t in the sample series
is measured by the sample SD of daily returns from day t to T, where day T is the last day of
the sample series, defined as the maturity of the corresponding option contract. This follows
Christensen and Prabhala (1998) and avoids the maturity mismatch problem. Our time series
stop at T-22 to ensure all realized volatility figures are computed with a minimum of 22
observations. A standard number of 252 trading days was adopted for annualization. The
realized volatility is thus based on the following:

RVt,T =
√∑T

i=t+1

(
Ri − Rt,T

)2

n − 1
× √

252 (18)

where RVt,T is the ex-post realized volatility from day t to T (where T is the maturity date of
the option and T > t) and Ri is the daily index return on day i. Rt,T is the mean daily index
return from day t to T, and n is the sample size which is equivalent to (T − t).

3.4.2 Black–Scholes implied volatility (BSIV)

The standard Black and Scholes (1973) model is employed for estimating the benchmark
(risk-neutral) implied volatility:

BSI Vt = J (K , St , (T − t) , rt , δ) (19)

where J stands for the inverse of the risk-neutral Black and Scholes (1973) put option
function.
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3.4.3 Ambiguity-based implied volatility (IVc)

This is obtained after setting the c parameter to a specific level of ambiguity aversion and
backing-out IVc under heterogeneous ambiguity beliefs.

I Vc,t = L (K , St , (T − t) , rt , δ, ct ) (20)

where L stands for the inverse of the Choquet-based put option function (and its multiple-
priors equivalent) based on Eq. (13).

3.4.4 Option implied ambiguity (IC)

Ambiguity-adjusted implied volatility ICBSIV is obtained by multiplying the standard BSIV
with the implied IC factor. Ambiguity proxy IC is backed-out from Eq. (13) by minimizing
the absolute error between observed index options prices and model intrinsic values such
that:

AE I C
t = minc|0<c<1

{∣
∣
∣P P

t (St , K , rt , (T − t) , σt , μt , ct ) − P M
t

∣
∣
∣
}

(21)

where AE I C
t stands for the absolute error between observed index options prices and model

intrinsic values, function P P
t stands for the Choquet-based put option price (Eq. 13) (and

its multiple-priors equivalent) derived in Sect. 2. P M
t is the observed index option price, S,

K and r are as defined before, T − t stands for the time to maturity in units of a year, and
μt is the subjective expected return. The extraction of option implied ambiguity IC reduces
to a simple minimization problem under Eq. (21). We employ the annualized average daily
return over the previous 2 years as an approximation for μt .

3.4.5 Stochastic volatility (SV)

As a robustness check, we compare the predictive power of option implied ambiguity IC
to stochastic implied volatility based on Heston’s (1993) stochastic volatility specification.
Since the calibration of the Heston model is not the main theme of this paper and does not
affect the role of SV as a benchmark predictor, we compute the Heston SV according to the
standard parameters stated below. The Heston SV is defined as:

SVt = H (K , St , (T − t) , rt , ρ, λ, κ, θ, σV ) (22)

where H stands for the inverse of the Heston pricing function, K , St , (T − t) and rt are as
defined before, ρ is the correlation between the two Wiener processes implicit in the Heston
model, λ is the price of volatility risk, κ is the mean reversion parameter, θ is the long-run
mean of variance, and σV is the volatility of volatility. We define these model parameters as
ρ = −0.25, λ = 0, κ = 1, θ = 0.03, σV = 0.5 over the entire 2006–2008 period.

4 Empirical findings

This section presents our empirical findings, along with descriptive statistics and graphical
representations of investors’ option implied ambiguity. Figure 1 illustrates the subjective
behavior of put option holding investors during the 2006–2008 period. It plots the dynamics
of implied volatility for the index under pessimism (c = 0.2), risk-neutrality (c = 0.5) and
optimism (c = 0.8). It also shows the S&P 500 index level for comparison. A consistent
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Fig. 1 Ambiguity-based implied volatilities (IVc) versus daily index levels (2006–2008)

pattern emerges involving gradual increases in all three implied volatilities in the period
leading up to the credit crunch and the September 2008 crash when volatilities suddenly
jump upwards as a result of the Lehman Brothers collapse. The figure suggests that after
September 2007, risk-neutral implied volatility (IV0.5)was likely to underestimate put option
value relative to subjective ambiguity sentiments, confirming that risk-neutral analysis may
understate the probability of rare adverse events (e.g., occurrence of amarket crash or extreme
downside losses in index levels). For put options to be more valuable and in-the-money,
investors needed to bet against or short the index. Unlike their pessimistic or optimistic
counterparts, risk-neutral investors seem to underestimate the likelihood of such an adverse
event. This suggests that ambiguity aversion may have an impact on the dispersion of index
returns and moderate the IV–RV relationship in uncertain times. Figure 1 also shows how
the upward trends in implied volatilities tend to correlate with downside fluctuations in
underlying stock index levels, confirming an inverse association between put volatilities and
the index. The shaded area to the right highlights the unusual dynamics of implied volatilities
surrounding the fall 2008 global banking crash.

Figure 2 depicts option implied ambiguity IC versus risk-neutral BSIV and index levels,
documenting clear patterns of ambiguity aversion (c < 0.5) during the subprime crisis and
shifts in ambiguity from 2006 to 2008. The IC indicator increases incrementally (i.e., from
high to low ambiguity aversion) in the period leading to the September 2008 crash. This can
be explained by improved option moneyness and uncertainty resolution around the options’
maturity dates (i.e., investors’ optimism about their put option prospects). This finding rejects
the hypothesis of risk-neutrality among investors.

Table 2 reports summary statistics of ambiguity-based implied volatilities IVc and implied
ambiguity IC for US SPX index options over 2006–2008 under multiple-priors and Choquet
ambiguity.MEUambiguitymodeling involves uncertainty in the drift of the stochastic process
of Eq. (1) by entertaining different values for parameter m (assuming s = 1), whereas CEU
involves uncertainty in both the drift (m) and the volatility scalar s (s �= 1).We assess implied
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Fig. 2 Option implied ambiguity (IC) versus Black–Scholes implied volatility (SPXIV) and daily index levels
(2006–2008)

volatility behaviors under pessimism (c = 0.2), optimism (c = 0.8) and risk-neutrality
(c = 0.5) using designated c values (Eq. 20). IC dynamics (see Eq. 21) are also presented in
the table. Findings show that ambiguity-based IVc estimates are higher than BSIV for CEU
in line with the logic of probability weighting, but not for MEU in accord with the maxmin
criterion. IC descriptive statistics confirm that ambiguity aversion is consistently observed
throughout the 2006–2008 period. Sections 4.1 and 4.2 summarize our regression findings
for setups 1 and 2.

4.1 Implied volatility under heterogeneous ambiguity beliefs (setup 1)

Equation (14) predicts that the IV–RV relationship holds under different c levels (i.e., beyond
risk-neutrality) such that IVc is a significant and efficient predictor of RV. Table 3 presents our
univariate regression results.We report results for two sets of ambiguity aversion (c = 0.2 and
c = 0.4) and two sets of ambiguity-seeking behaviors (c = 0.6 and c = 0.8) under bothMEU
and CEU. The benchmark case based on c = 0.5 is also shown in the table. The t-statistics are
Newey and West (1987) adjusted. The results confirm that the information content of option
implied volatility holds under pessimism and optimism (i.e., it is not exclusive to risk-neutral
analytics) for both MEU and CEU. The IV–RV relationship is significant across a range of
ambiguity levels including high pessimism or high optimism, confirming the moderating
behavior (quantified in setup 2) from c-ignorance and the existence of multiple IV–RV lines
with different slopes. More importantly, we find that our subjective IVs (c �= 0.5) tend
to outperform BSIV in terms of information content and predictive power across all sub-
periods examined, disproving the superiority of the risk-neutral IV–RV association. The
MEU specification seems to perform better under pessimism, while the CEU formulation
shows better goodness of fit under optimism in line with decision theory conjectures. These
results confirm that standard (risk-neutral) options analysis can be incomplete. Relying on
risk-neutral implied volatility for RV prediction therefore ignores investor sentiment towards
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ambiguity and does not capture fully the dispersion of index returns in uncertain times. Our
hypothesis on the multiplicity of the IV–RV relationship is thus validated.

As a follow-up to setup 1, Table 4 compares the predictive performance of BSIV × IC
versus BSIV to ascertain the incremental information content of option implied ambiguity
IC. It shows results relating to the estimation of the moderating effect of IC on the IV–
RV linkage under both MEU and CEU. Equation (15) predicts that the ambiguity proxy IC
contains predictive RV information beyond BSIV and that IC moderates the relationship
between IV and RV such that IV will lead to even higher RV.

4.2 The information content of ambiguity-adjusted implied volatility (setup 2)

In comparing the predictive power of ICBSIV (under both MEU and CEU) vs. that of BSIV
over various prediction horizons (setup 2), Table 4 regressions show that ICBSIV-related
estimates are less biased than the standard BSIV benchmark counterparts. ICBSIV coeffi-
cients are significantly different from zero and coefficient significance and predictive power
are stronger (i.e., nearer to unity) when accounting for ambiguity. R2 is consistently higher
when including BSIV×IC interactions in the regressions. An interesting finding is that BSIV
becomes insignificant during the 06/2007–12/2008 period once ICBSIV is introduced in the
regressions. This suggests that ambiguity-adjusted implied volatility subsumes information
from its risk-neutral counterpart during highly uncertain or ambiguous events (i.e., the credit
crunch and the fall 2008 crash). The ICBSIV estimate is, therefore, a better predictor than
BSIV for this time window. The positive moderating/interaction effect of IC is validated
for the entire 2006–2008 period (VIFs < 3.2). The incremental information content of
our ambiguity-based indicators is robust, sometimes reaching differences in R2 of up to 11
pp and 13 pp for MEU and CEU, respectively. While the MEU specification outperforms
BSIV across all sub-periods, we find that the CEU framework captures more predictive RV
information than its MEU counterpart. This suggests that probability weighting might be
more common than simple maxmin criteria in option trading decisions. This holds across
the entire sample period and over various time windows. It thus validates our hypothesis
that ambiguity-adjusted volatility ICBSIV is more efficient, less biased and contains extra
information relative to BSIV. This conclusion holds after controlling for residuals’ bias via
orthogonal regressions.

The overall results confirm the positive moderating role of option implied ambiguity IC in
the IV–RV relationship, with IC containing incremental information. This complements the
findings from setup 1 by corroborating the moderating role of investors’ ambiguity aversion
in the IV–RV relationship. We estimate the degree of moderation of the c variable implied by
observed put option prices around the subprime crisis. The positive sign of the BSIV × IC
coefficients indicates that ambiguity aversion, as implied from put options prices, leads to
higher realized index volatility in times of uncertainty. In other words, ambiguity captured in
index put option prices is associated with higher volatility in the stock market. These results
hold using daily and weekly data.

4.3 Additional results and robustness tests

For robustness, we ran additional tests of information content. First, we assessed the informa-
tional efficiency of the IC factor both in itself and in conjunction with BSIV, by regressing IC
and BSIV on RV over the 2006–2008 period under multiple-priors and Choquet ambiguity.
Table 5 summarizes our results. Findings show that option implied ambiguity is significant
and contains incremental information over BSIV. Forecasts are significantly improved when
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Table 5 The incremental information content of option implied ambiguity

Ambiguity
framework

Independent variables

Constant IC BSIV CBOE SKEW index Adj R2 (%)

1. SPX (MEU) 0.237 (10.37) 0.569 (6.18) – – 32.23

2. SPX (MEU) 0.103 (3.29) – 0.829 (9.13) – 68.68

3. SPX (MEU) 0.072 (2.80) 0.222 (3.95) 0.722 (8.17) – 72.44

4. SPX (MEU) 0.850 (5.42) – 0.748 (11.65) −0.258 (−4.94) 74.66

5. SPX (MEU) 0.723 (5.39) 0.166 (4.26) 0.680 (10.80) −0.222 (−4.87) 76.64

6. SPX (CEU) 0.209 (9.50) 0.672 (7.80) – – 45.00

7. SPX (CEU) 0.103 (3.29) – 0.829 (9.13) – 68.68

8. SPX (CEU) 0.077 (3.23) 0.283 (4.25) 0.663 (7.52) – 73.92

9. SPX (CEU) 0.850 (5.42) – 0.748 (11.65) −0.258 (−4.94) 74.66

10. SPX (CEU) 0.669 (5.19) 0.210 (4.45) 0.643 (10.27) −0.203 (−4.62) 77.24

NW t-statistics in parentheses
The table summarizes our regression results for US SPX options under MEU and CEU. We assess the infor-
mational efficiency of the IC factor (where implied c is extracted from option prices based on Eqs. (13), (17)
and (21)) both by itself and in conjunction with BSIV by regressing BSIV and IC on RV over the whole
2006–2008 period such that: RV = f (BSIV, IC). These results are also valid for shorter time windows within
2006–2008

taking the combined effects of BSIV and IC in the MEU and CEU regressions (VIFs < 2).
These results hold even after controlling for fat tail risk (proxied by the CBOE SKEW index)
(Table 5) and volatility of volatility effects (proxied by the CBOE VVIX) in the regression
models (unreported).10 This confirms that our ambiguity proxy IC has incremental informa-
tion content over BSIV and other implied risk-neutral option information. Once again, we
find that option implied ambiguity is positively associated with stock market volatility over
the 2006–2008 period. This is valid for both daily and weekly data frequencies.

As additional robustness, we tested the extent to which IC moderates (risk-neutral) IV
under a stochastic volatility SV specification, relaxing the assumption of constant volatility
characterizing the Black–Scholes model. Our findings are robust (daily and weekly) to this
alternative specification with IC containing extra information beyond the Heston (1993) SV,
both on its own (IC) and in interaction (SV × IC). These results are presented in Table 6
(VIFs < 2 in the bivariate regressions). Our findings are also valid when the VIX index,
historical or GARCH volatility are employed (instead of BSIV or SV) or when using the
Investor Intelligence Index from Investors Intelligence (II) as an alternative proxy for c in the
regressions. Despite the relatively small time window considered, out-of-sample forecasts of
realized volatility confirm that our MEU and CEU-based indicators outperform risk-neutral
BS forecasts. Our findings once again hold after controlling for residuals’ bias via orthogonal
regressions.

Finally, we assessed the informational efficiency of the s × BSIV factor from Eq. (13)
compared to BSIV by running univariate RV regressions over the 2006–2008 period under
CEU. Table 7 summarizes these results, confirming that s × BSIV is a superior predictor
of RV than BSIV across all sub-periods. We also find that the well-known volatility smile
becomes flatter when accounting for ambiguity in option pricing (Fig. 3). Our overall results

10 The significance of the IC variable is also maintained after controlling for realized skewness and kurtosis
in the regressions.
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Fig. 3 Ambiguity-based volatility smile (s × IV) versus Black–Scholes volatility smile (BSIV)

hold using both daily and weekly data specifications. The conclusions are also unchanged to
how IV and IC are extracted from observedmarket prices (i.e., separately or simultaneously),
moneyness specification or how RV and μ are estimated. For comparative purposes, we also
ran regressions on 2004–2006 SPXput options data (nonOTM) to test howwell ICmoderates
the IV–RV relationship in less ambiguity-intense periods. Although the moderating role of
ambiguity is still present and significant, its impact and predictive power are weaker during
normal periods involving lower ambiguity. As there were less frequent deviations from risk-
neutrality among option investors during the 2004–2006 period, this result is logical. Option
implied ambiguity is indeed more relevant in times of uncertainty.

5 Conclusions

This paper examines the lead–lag relationship between option and stock markets during the
subprime crisis, testing the role of option implied ambiguity in volatility and risk prediction.
We find a positive moderating role of option implied ambiguity in the lead–lag IV–RV rela-
tionship. Ambiguity predicts and contributes to positive changes in stock market volatility in
highly uncertain times.We document shifts in ambiguity aversion among put option investors
in the period leading to the 2008 crash, and show that ambiguity-adjusted estimates contain
more information and are less biased than their risk-neutral Black–Scholes and stochastic
volatility counterparts. Specifically, we compare the information efficiency of the standard
risk-neutral modeling framework with that of our multiple-priors and Choquet-based option
pricing models. We extract investor ambiguity and uncertainty attitudes from observed index
option prices to test how well the IV–RV relationship holds under ambiguity aversion and
ambiguity-seeking. Our findings suggest that standard (risk-neutral) options forecasts can be
improved upon via estimating implied volatilities under c-ignorance and by accounting for
option implied ambiguity dynamics in market supervision and risk prediction exercises.
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Our results also confirm that option investors do not necessarily follow a unique deci-
sion rule in situations involving outcomes with ambiguous prospects, reinforcing Keynes’
(1936) assertion on the role of optimism and pessimism in financial markets. Our extended
ambiguity models, tested on US data during the turbulent 2006–2008 period, offer a better
means of tracking investors’ beliefs and uncertainty preferences, reflecting traders’ tendency
to deviate from risk-neutrality and their propensity to insure themselves against crash occur-
rences or extreme downside risk eventualities. This underscores the need to consider broader
economic models and uncertainty frameworks that go beyond standard principles to encom-
pass abnormal, fuzzy or extreme volatility events impacting on the financial system. Such
extended frameworks may help better explain actual investment behavior. Given the forward-
looking nature of the derived option-based information, behavioral measures of uncertainty
implied from options markets can contribute to better monitoring and tracking of investment
sentiment and systemic market fluctuations. These measures can also be used as inputs or
complements to current indicators of uncertainty in the macro economy.

Future research utilizing the information content of the IC factor and ambiguity-based
IV can examine longer time periods and cover other crisis situations (e.g., the 1987 crash,
1997 Asian financial crisis, 2011–2012 Eurozone sovereign debt crisis) using monthly non-
overlapping data or intraday information.Assessing the impact of governmental interventions
and periodic fiscal stimuli on the evolution of the IC factor also merits attention. Call option
model variants can also be analyzed to examine investor ambiguity aversion or ambiguity-
seeking with respect to upside (growth) opportunities, or to study volatility smiles, skews
and smirks under ambiguity. Both stochastic and model-free volatility dynamics (e.g., Faria
and Correia-da-Silva 2014) are also worth investigating from a similar perspective.
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